Machine-learning certification of multipartite entanglement for noisy quantum hardware
Acrobat PDF — A J C Fuchs, E Brunner, J Seong, H Kwon, S Seo, J Bae, A Buchleitner, and E G Carnio — Entanglement is a fundamental aspect of quantum physics, both conceptually and for its many applications. Classifying an arbitrary multipartite state as entangled or separable—a task referred to as the separability problem—poses a significant challenge, since a state can be entangled with respect to many different of its partitions. We develop a certification pipeline that feeds the statistics of random local measurements into a non-linear dimensionality reduction algorithm, to determine with respect to which partitions a given quantum state is entangled. After training a model on randomly generated quantum states, entangled in different partitions and of varying purity, we verify the accuracy of its predictions on simulated test data, and finally apply it to states prepared on IBM quantum computing hardware.
Acrobat PDF — A J C Fuchs, E Brunner, J Seong, H Kwon, S Seo, J Bae, A Buchleitner, and E G Carnio — Entanglement is a fundamental aspect of quantum physics, both conceptually and for its many applications. Classifying an arbitrary multipartite state as entangled or separable—a task referred to as the separability problem—poses a significant challenge, since a state can be entangled with respect to many different of its partitions. We develop a certification pipeline that feeds the statistics of random local measurements into a non-linear dimensionality reduction algorithm, to determine with respect to which partitions a given quantum state is entangled. After training a model on randomly generated quantum states, entangled in different partitions and of varying purity, we verify the accuracy of its predictions on simulated test data, and finally apply it to states prepared on IBM quantum computing hardware.
Teleportation of the superposition of coherent states and the vacuum state
Acrobat PDF — S.R. Ahmadi, F. (2025). Optoelectronics, 7(4), 9-18 — Quantum state teleportation plays a significant role in the field of quantum information transfer. In this article, we proposed the teleportation of a state prepared as a superposition of a coherent state and a vacuum state, using a generalized hybrid entangled state. By considering a setup that includes a beam splitter and a photon detector, and under appropriate conditions, successful teleportation of the entangled state composed of the coherent state and the vacuum state can be achieved. Furthermore, it has been shown that when considering entangled states of even or odd coherent states and the vacuum state, the success probability significantly increases to 0.5. These results indicate that the generalized hybrid entangled state plays a crucial role in the quantum teleportation of these states.
No comments:
Post a Comment